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Goals of Geospatial Statistics 
Workshop and Report

(1) Introduction to spatial and temporal modeling  
challenges and statistics for spatial data.

(2) Review techniques to assist with spatial and temporal 
modeling challenges for the EERE modeling teams.

(3) Illustrate examples using common EERE data sets.
(4) Review software for spatial analysis. 
(5) Produce a (post workshop) paper with recommended 

approaches and examples. 
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Overview

Why spatial and spatio-temporal statistics?
How Exploratory Spatial Data Analysis (ESDA) can help 
interpret spatial data.
How to use observed data to estimate an unknown 
process.
Developing models for point-referenced and areal data. 
How to work with misaligned data and multiple spatial 
scales.
Review of Software Options.
Questions and Discussion. 
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(1) Introduction to spatial and temporal modeling 
challenges and statistics for spatial data.

Geospatial Statistics and 

Issues in Energy Modeling

Gardar Johannesson and Jeffrey Stewart

Lawrence Livermore National Laboratory

May 10-11, 2005
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Aggregating and disaggregating spatial and temporal data between
NERC regions, census divisions, numerous utility and county 
districts.
Integrating simulated or areal data with sparse point data.
Incomplete data sets.
Poor data quality.

Common Challenges Working With Spatial 
and Temporal Data for EERE Modelers
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Physical Models Still Need Improvements 
Before Relying Solely On Their Results
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(Altamont, CA) 
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Model 0.44 km

Terrain complexity and other unknown factors contribute 
to the model errors. 
Point data, local physical and regression models can 

be used to reduce the reliance on single data sources. 
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Terrain Calibration of Forecast Error Using 
COAMPS Model and Measurement Station Data
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“Data that are close together in space and time are  
often more alike than those that are far apart”.Cressie

0.5 deg lat and long 0.1 deg lat and long

Data representing both physical and socio-economic phenomena tend 
to demonstrate spatial correlation. The precipitation maps below shows a 
generally smooth transition The electric demand map shows clustering of 
high and low energy demand. It indirectly shows the tendency of 
populations to cluster (see coastal regions). 
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Using Statistical Means Solely Can 
Lead to Misrepresentation 

The Mean offers some initial insight into the population or event of concern. 
Adding a distribution over the population or event improves the ability to 
estimate or predict. The mean for each one of these graphs is 7 m/s. 
However, the shape (PDF) of each graph will produce very different wind 
power estimates. The median wind speeds m/s (6.60, 6.90 and 2.30) begin 
to give a better indication of the frequency economical winds are available. 
Regression models using topographical features may allow  modelers to 
estimate improved statistics on a site. 

Some wind turbines do not operate below 3-5m/s or above 25m/s.
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Averaging Behavior Over Portions of the Day 
for Each Season Loses Crucial Information
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Wind ElectDmd

B0;900;0;0.0201;0.1a 22

6.9Starting at months

Demand and wind generation (peak demand scaled to 1kW)

• Averages lose the fact that wind energy comes in bursts, which affect capacities of other 
generators

• Averages over long periods of the day:  don’t recognize hourly fluctuations
• Example: averaging loses the fact that there really was no wind generation in the hours 

that the system demand was at peak at this site.
• Aggregation and averaging is more likely to lead to systematic errors in the penetration 

of intermittents and changes to the balance of the system
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Input Data:Key Take Away 

Data provided by non energy modelers often needs to be 
modified to appropriately represent the analysis of 
interest.
Using data at inappropriate spatial and temporal 
resolution can lead valid energy models to erroneous 
results.
Introducing spatial statistics for data analysis is a 
convenient and proven way to conduct analysis that can 
be validated.
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General Spatial Model

Statistics relies on various types of stochastic models. 
The data may be continuous or discrete, spatial 
aggregations or observations at points in space.The 
stochastic model is used to summarize existing data 
or to predict unobserved data. Cressie

Note: A spatial model may not explain why an event occurs, 
unlike the more common definition of a model.

The General Spatial Model: where:

=s Spatial location belonging to the set D
=D Random set
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What Are We Looking For?
The data we get is not necessarily 
what we want…

We might observe point-
referenced data, but want a 
fine-resolution map 
(interpolation/extrapolation)
We might observe areal data 
with missing data for some of 
the units, but want complete 
data (prediction/imputation)
We might observe areal data 
at a given set of areal units, 
but need them at a different set 
of units (misaligned data)
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Reason to Use Statistics for 
Spatial Data

•Make a prediction of a value at a 
location that was not measured.  

How ?

•Obtain data that will allow us to 
make a probabilistic estimate of the 
value we want.  

•Develop a model of the underlying 
process and calibrate it from our 
data.  

•Calibrate the model (e.g  make a 
probabilistic estimate of the 
probability distribution over the error 
between our model and the true 
data).  

Need to 
predict 

un-
observed 
locations

Need to 
predict 
missing 
county 
data

Our model is basically an estimate of the expected value at any point and is a function of a) the location in space and b) any other 
relevant “external” data. Make an estimate of the error between the model and the true value.  Base this estimate on information from 
known measurements taken near the location. Make a model of the statistical correlation between points that are near each other.
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Data Types

Basic spatial data-types:
Data associated to point locations (point-referenced data) which 
can come from individual measurement stations (met towers), 
individual building energy use etc.
Data associated to areal units/cells/zones (areal data),examples
are summary statistics, simulated data representing statistics on 
a region, grid, etc.
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Point-Referenced Data

Each observation is associated 
with a point location:

Let Z(s1), Z(s2), …, Z(sn)
denote n observations 
associated with the spatial 
point-locations s1, s2, …, sn

Example: Observed average 
wind-speed in a given time 
period at given sites

The data can be observed at 
spatially irregular sites or on a 
regular grid

Observed data at 92 spatially 
irregular sites 
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Areal Data

Each observation is associated 
with an areal unit (cell, zone)

Let Z(D1), Z(D2), …, Z(Dn)
denote n observations 
associated with the areal 
units D1, D2, …, Dn

County-aggregated data; some 
counties have missing data

Two types of areal data:
Areal aggregation.  The 
observed data is generated by 
an aggregation process (e.g., 
counties’ average wind speed)
Areal explicit.  The data is 
explicit to the areal units (e.g., 
counties’ budget)



17

What Are We Looking For?
The data we get is not necessarily 
what we want…

We might observe point-
referenced data, but want a 
fine-resolution map 
(interpolation/extrapolation)
We might observe areal data 
with missing data for some of 
the units, but want complete 
data (prediction/imputation)
We might observe areal data 
at a given set of areal units, 
but need them at a different set 
of units (misaligned data)

Need to 
predict 

un-
observed 
locations

Need to 
predict 
missing 
county 
data



18

Defining The Unknown Process

The Unknown (Target) Process is the data we are trying 
to estimate to explain a process, event, phenomena. We 
may not need to understand “why” it happened or is 
expected to happen, but we do model when it should 
have happened or may happen.
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The Unknown Process

Make a formal separation between 
what is observed and what is sought 
after

Point Data:
Z(si) = Y(si) + εp,i ;  i = 1, …, np

Areal Data:
Z(Dj) = Y(Dj) + εa,j ; j = 1, …, na

Where we denote by:
Y = the true, unknown

process, the Y-process
ε = the data-error (if any)

The data-error might be zero for some 
data

Process Data

Process Data

Point data

Areal data
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Multiple Data Types

The same Y-process can often be the 
generating mechanism for both point-
data and areal-data:

Z(s) = Y(s) + εp

Z(D) = Y(D) + εa, where
Y(D) = avg{ Y(s) : s in D }

Hence, the value of the Y-process in 
areal unit D is just given by the average 
(integration) of Y over D

There are other cases where the Y-
process is only well defined on a given 
set of areal units, and aggregation of 
those units

Point Data Areal Data

The unknown 
Target Process
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Modeling the Unknown Process

Large-scale 
trend     

(unknown)

External 
data 

(known)

Small-scale 
process 

(unknown)

Observed 
point-data

Observed 
areal-data

Unknown  
process

Break down the variation in the 
unknown target process into 
contributing components and then 
analyze and model each component

Large-scale variation (trend)

External explanatory data

Spatially correlated small-scale 
variation
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(2) Review techniques to assist with spatial  modeling 
challenges for the EERE modeling teams.

Geospatial Statistics and 

Issues in Energy Modeling
Gardar Johannesson and Jeffrey Stewart
Lawrence Livermore National Laboratory

May 10-11, 2005
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Defining Exploratory Spatial Data Analysis

ESDA should always be the first step in any data 
analysis
ESDA is mostly graphics-based approach to explore the 
basic characteristics of the observed data
In ESDA, we particularly look for approaches to explore:

The possibility of large-scale spatial trend in the data and how 
that trend can be captured/model.
The (marginal) variation in the data; the mean, the spread of the 
data, etc.
Possible correlation to external readily-available data and how 
that data can be used to help in explaining (and reduce) the 
variation in the observed data.
The spatial correlation in the data and how it varies with 
distance.



24

Observing Spatial Trend

Visually easy to see 
large scale-trends in 
areal data
There are numerous 
graphical ways to 
visualize potential 
trend in point-
referenced data

Label data-points 
according to rank 
(quartiles)
Use plot symbols that 
reflect the observed 
value at each point
Marginal East/North 
scatter plots
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Detrending Point-Data Reduces the 
Large Scale Variation

The large-scale trend is subtracted from the point data, yielding 
detrended point-data that has smaller variation

Original point-referenced data Detrended point data

Note smaller variation
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Using External Explanatory Data
There might be available 
external data that is 
correlated with the observed 
data, and therefore useful 
for prediction

Available 
external data
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Additional Analysis Using Point-Data 
Residuals

Detrended point-referenced data Point-referenced residuals

Note smaller variation

The contribution of the external data is subtracted from the detrended 
point-data, yielding point-data residuals that have even smaller 
variation
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Variation Reduction

Variation in data can 
be explored through 
histograms
Aggregation reduces 
the variation (see 
histogram 1 and 2 of 
original point-data vs. 
original areal-data)
Detrending reduces 
the variation (see 1 
and 3)
The use of 
explanatory variables 
reduces the variation 
even further (see 3 
and 4)

1 2

3 4
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Spatial Association (Point-Data)

Where h is a given distance and N(h)
is the set of points (approximately) 
separated by h

Empirical semivariogram 
based on observed 

point-data

Empirical semivariogram 
based on point-data 

residuals
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The empirical semivariogram:
Provides information about the 
spatial association in point-
referenced data as a function of 
distance between points

Point-Referenced Data: The goal 
is to gain information about the 
spatial association in point-
referenced data

Spatial Correlation is strongest near zero
and does not exist above dashed line
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Spatial Association (Areal-Data)
One can use the empirical 
semivariogram to explore the spatial 
association in areal data.  That 
requires a distance measure between 
areal units, which can be taken as the 
distance between the units’ centroids

Empirical semivariogram 
based on observed 

areal-data

Empirical semivariogram 
based on areal-data 

residuals
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The proximity matrix W = (wij):

Di ~ Dj: Di and Dj are neighbors

Spatial Proximity of Areal Units
An alternative to use areal units’ 
centroids to define a distance-
measure between units is to 
define the spatial proximity 
through a neighbor 
relationship

Counties that share 
borders are neighbors

First order neighbors of 
a given county

Second order neighbors 
of a given county





=
otherwise0

 if1 ji
ij

 ~ DD
w
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Spatial Association via Proximity

( )

( ) )1()(

)()(

2
,,

2

−−

−
=

∑

∑∑
nZDZ

wDZDZw
C

i
i

ji
ij

ji
jiij

Geary’s C provides 
information about the spatial 
association in areal data by 
using the spatial proximity 
matrix W

The goal is to measure (empirically) the spatial association in areal data

Geary’s C has similar interpretation as the semivariogram

The graph to the left shows Geary’s C computed 
for 1st, 2nd, and 3rd order spatial neighbors using 
areal-data residuals

There is very little spatial association outside 1st

order neighbors
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ESDA: Geary’s C and Moran’s I
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Where recall that W = (wij) is the proximity 
matrix.  Under no spatial association, the 
expected value of C and I is 1 and -1/(n-1), 
respectively.  Low value for C and a value 
of I distant from -1/(n-1) hint at spatial 
association
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ESDA: Geary’s C and Moran’s I

Example of Geary’s C and Moran’s I 
applied to areal county data (from 
previous slide) for 1st, 2nd, and 3rd

order neighbors

The two provide the same 
information; 3rd order neighbors show 
little or no association

It is possible to perform a formal test 
of significance for both Geary’s and 
Moran’s association statistics, but 
they are mostly used as exploratory 
tools

Geary’s C for 
detrended areal data

Moran’s I for 
detrended areal data
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Spatial Modeling Recap
The goal is to construct a model that relates the observed spatial data to 
the unknown process of interest and can be used to predict the process 

at any site/area of interest, along with an uncertainty measure

The unknown 
Target Process

Large-scale 
trend     

(unknown)

External 
data 

(known)

Small-scale 
process 

(unknown)

Observed 
areal data

Observed 
point data
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Models for Point-Referenced Data

The Data Model:
Z(si) = Y(si) + ε(si) ;  i = 1, …, n

where:
Y(si) = unknown process
ε(si) = observation errors

The Process Model:
Y(si) = µ(si) + f(xi) + δ(si)

where:
µ(si) = large-scale trend
f(xi) = external predictor
δ(si) = small-scale variation

The error process ε(si):
Assumed independent with zero 
mean and variance σ2

The large-scale trend µ(si):
Assumed deterministic, for 
example µ(si) = a + b lat(si)
The external predictor f(xi):
A function of external data xi
The small-scale process δ(si):
Assumed to be zero mean and 
spatially correlated process:

Cov(δ(si), δ(sj)) = τ2 K(|si – sj|)
where τ2 is the variance and K
is a distance based correlation 
function

“Classical” Geostatistical Model

It then remains to specify the various 
terms of the model
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Modeling the Spatial Correlation
The distance-based correlation 
function K(|si – sj|) of the small-
scale process needs to be 
specified
Some options are:

Exponential: exp(-d/φ)
Gaussian: exp(-(d /φ)2)

where d is distance and φ is a 
range parameter, controlling the 
extend of the spatial correlation
The variogram:  It is the case that

Var(δ(si) - δ(sj)) = 
2 [ τ2 (1 - K(|si – sj|)) ]

Define the semivariogram as:
γ(|si – sj|) = τ2 (1 - K(|si – sj|))
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Examples of Spatial Variation

Example of 9 spatially 
correlated Gaussian 
random fields, with 
each row showing three 
fields generated with 
the same spatial 
correlation structure

An exponential spatial 
correlation structured 
was used
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Example of Spatial Point Prediction

Consider the Model:
Z(si) = Y(si) + ε(si) 
Y(si) = [β1 + β2 lati)] 

+ β3 xi
+ δ(si)

where the unknown parameters 
are the β’s and the 
variance/covariance parameters 
associated with ε(si) and δ(si)

Parameter Estimation:
Maximum likelihood (assuming 
Gaussian distribution of stochastic 
error terms)

Prediction:
Given estimates of unknown 
parameters, the Y-process 
can be predicted at any 
spatial location.
The distribution of the 
predicted process is 
Gaussian
Optimal prediction is given by 
the mean value of the 
predictive distribution. The 
standard deviation of the 
predictive distribution shows 
the uncertainty

Data

Trend

External

Spatial
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Spatial Point Prediction (con’t)
Mean Prediction Standard Deviation Residuals
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Models for Areal Data

The Data Model:
Z(Di) = Y(Di) + ε(Di)

where:
Y(Di) = unknown process
ε(Di) = observation errors

The Process Model:
Y(Di) = µ(Di) + f(Di) + δ(Di)

where:
µ(Di) = large-scale trend
f(Di) = external predictor
δ(Di) = small-scale variation

Identical Setup as for Point Data

Spatial correlation is induced 
through the proximity matrix

W = (wij)
CAR: The conditional 
autoregressive model:

SAR: The simultaneous 
autoregressive model:

where ui ~ N(0,τ2)
For “grid-like” areal-units, one can 
use point-referenced spatial 
correlation models

The difference is in the modeling of 
the spatially-correlated small-scale 
variation δ(Di)
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Examples of Spatial Variation

Example of 9 spatially 
(Gaussian) correlated 
areal data generated 
using the SAR model 
with 3 different spatial 
correlation ranges.

A nearest-neighbor 
proximity matrix is used
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Example of Areal Unit Prediction
Mean Prediction Standard Deviation Residuals
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Using Both Point and Areal Data

It is possible to take simultaneously 
advantage of point-referenced data 
and areal data when both carry 
information about the same process, 
although at different spatial scales
Need to model the target process at 
a point-scale (or at a fine resolution)
The Data Model:

Z(sj) = Y(sj) + ε(sj)
Z(Di) = Y(Di) + ε(Di)

where:
Y(s) = unknown process
Y(D) = avg{Y(s) : s in D}
ε(sj) = point-data error
ε(Di) = areal-data error

Point Data Areal Data

The unknown 
Target Process
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Using Spatial Prediction Maps

Example of usage: Want to 
estimate the average/max/min 
of the Y-process in a give sub-
region
Recall that the result of the 
spatial prediction is a 
distribution of the Y-process 
The plug-in approach: Use 
the mean predicted value of 
the process and compute the 
quantities of interest; that is, 
plug the optimal map into the 
“formula” for the answer

Uncertainty associated with 
the plug-in approach: Can use 
the predicted standard 
deviation to estimate 
uncertainty in the output
The stochastic approach:
Generate realizations of the Y-
process from the predictive 
distribution (i.e., many maps) 
and compute the quantities of 
interest for each map.  This 
yields the distribution of the 
quantities of interest

The goal is to use the results of the spatial prediction to answer 
questions of interest; the plug-in approach vs. the stochastic approach
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ESDA:Key Take Away Message

Using ESDA can make better use of Areal and Point 
data sets than other standard data analysis methods 
such as Classical Statistics.
ESDA allows you to build data and prediction models 
that will provided defensible techniques to data 
manipulation. 
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Misaligned Data and Processes
What to do when data is reported at one set of areal units but we need 

to make inference at a different set of areal units (different scale)

Observed Area 
Data

Fine-Resolution 
Grid

Coarse-Resolution 
Grid

For example: data reported on the county-level (with uncertainty and/or 
missing data for some counties), but we are interested in the unknown 
process on a regular coarse or fine resolution grid
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Resampling via GIS Software
A popular approach in GIS software is to 
“resample” the data to the new areal-units  
This is accomplished by assuming that the 
underlying process is uniformly distributed 
within each original areal unit and 
reallocation (resampling) is then carried 
out in proportion to overlapping area

Problems occur if there is
missing data, or
the underlying process is not believed 
to be (approximately) uniform within 
the original areal units
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Example of Resampling

Resampling

An example of 
resampling (complete) 
county-data to a course 
and fine resolution grids

The results for the 
fine-resolution grid 
are not realistic 
due to how refined 
it is compare to the 
original county 
data
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Model-Based “Resampling” Approach

The approach taken is to model 
the unknown Y-process either at: 
(1) the target areal units (i.e., fine-
resolution grid) or at 
(2) the set of areal units formed 
by the union of the areal units of 
the data and the target areal units
If the target areal units are at a 
much finer spatial scale than the 
data areal units, there is little 
difference between the two 
approaches

The goal is to create a more realistic “resampling” method

The data-model becomes:

Where aij is the area proportion of 
the data areal unit Di that is within 
the fine-resolution cell Bj

The fine-resolution Y-process is 
then modeled as an areal process 
(as introduced previously)

∑ +=
j

ijiji DBYaDZ )()()( ε
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Example of Model-Based Resampling

Given incomplete county-data, the Y-
process is predicted at a fine-resolution 
grid and the associated standard 
deviations mapped.

Comparison to the true Y-process shows 
favorable results

Data Prediction Standard Deviation

The true 
Y-process 
minus 
predicted
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Spatial Representation
What Resolution Should I Use?

We are able to work with multiple data at different spatial scales and 
predict the unknown Y-process at altogether different spatial scale.

Question: What resolution should I use when predicting the Y-process?

…It depends on what the prediction map is going to be used for…
Aggregation reduces the variation in the underlying process; shrinks the 
process to the local average.  
For some applications this might be problematic (e.g., finding the spread 
of the process), but not so for other applications (e.g., finding the mean).

…It depends on the (natural) spatial variation in the process…
If the process varies slowly with spatial location, due to long-range spatial 
correlation, then a coarser-resolution representation might be sufficient.
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Spatial Correlation and Resolution

Aggregation [fine to the left, coarse to the right]

Each row of four 
maps shows the 
aggregation of a 
(Gaussian) 
randomly 
generated spatial 
processes

Take note of how 
the aggregation 
has lesser impact 
on the long-range 
spatially  
correlated 
process (bottom) 
than on the short-
range spatially 
correlated 
process (top)
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The Impact on Variation

Aggregation [fine to the left, coarse to the right]
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Aggregation 
has lesser 
impact on the 
mean (average) 
tendency of the 
process
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Variation, Correlation, and Resolution

The variation, as represented by 
the standard deviation, decreases 
with increasing pixel-width for all 
ranges of spatial correlation, but 
more so for processes with low 
spatial correlation (see top graph),
The variation, as represented by 
the standard deviation, decreases 
with the pixel-with to correlation-
range ratio (bottom).
Given information about the spatial 
correlation, a resolution (pixel 
width) can be chosen 

Question: How does the change in 
variation relate to the spatial 
correlation and resolution? 



56

(3) Illustrate examples using common 
EERE data sets.

Geospatial Statistics and 

Issues in Energy Modeling

Gardar Johannesson and Jeffrey Stewart

Lawrence Livermore National Laboratory

May 10-11, 2005



Annual Average Wind Power 
Density Data For California

National Renewable Energy Laboratory Data Sets
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Annual Average Wind Data

The data covers California 
and shows an estimate of the 
annual average wind power 
density at 50m height as 
provided by TrueWind 
Solutions
The data is reported as 
200x200 meters pixel 
averages; areal-data
The question is: For geo-
processing, is it necessary to 
work at the 200m resolution 
or can one work with (more 
manageable) courser-
resolution maps? 

Annual average wind 
power density at 50m 
height in California
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Study Area
A small sub-region was selected for further study and the original 200m 

resolution data was aggregated to coarser resolutions
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ESDA: Variation

There is very 
little change in 
variation with 
resolution.
The impact on 
the right-tail of 
the distribution is 
important and 
the fraction of 
pixels in the 
range 400-500 
(class 4) and in 
500-600 (class 
5) are shown.

Use histograms to visualize the (marginal) variation in the wind power 
density at each resolution and look for shrinking variation with resolution
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ESDA: Spatial Correlation
The semivariogram can be used to summarize the spatial correlation 

pattern in the data at each resolution

The spatial 
correlation is 
seen to level off 
around 20km.

Note that the 
information in 
the semi-
variogram does 
not change with 
resolution
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ESDA: Conclusion

The goal was to determine the coarsest resolution that one could
work with and still have a good representation of variation in the 
wind power density, in particular the shape and extend of the right-
tail of the distribution.
To analyze the impact that resolution has on variation, the 200m
resolution data was aggregated in five steps down to 6,400m 
resolution.  A histogram of the aggregated wind power densities 
shows a gradual shrinking of the variation with coarser resolution, 
particularly when exceeding 3,200m resolution.
Instead of aggregating to coarser resolutions, it is possible to use 
the semivariogram, derived from the original 200m resolution data, 
to infer about the amount of spatial correlation in the data.  The 
spatial-correlation range provides information about the impact that 
aggregation at different resolutions has on the variation in the data.


